

Outline The magnitude of the problem: Limitations of <u>past</u> state (partition bins, cutoff values)

The Magnitude of the Problem

• 2,000+ Mayo lab tests with <u>numerical</u> results

The Magnitude of the Problem 2,000+ Mayo lab tests with numerical results Virtually all of them use arbitrary bins & cutoffs Severely affected are multi-analyte tests that require pattern recognition of complex profiles and subjective interpretation Amino acids Reference Values Plasma Amino Acid Reference Values Plasma <24 Months 2-17 Years > or =18 Years (nmol/mL) Age Group < or =12 Months Urine Amino Acid Reference Valu 13-35 3-6 7-8 Monthe Years Years 9-17 > or =18 Urine creatinine

The Magnitude of the Problem 2,000+ Mayo lab tests with numerical results

- Virtually all of them use arbitrary bins & cutoffs
- <u>Severely affected</u> are multi-analyte tests that require pattern recognition of complex profiles and subjective interpretation (i.e., my day job)

Crea	atine Dis	orders Par	hel Urin	
Reference	Values (bas	sed on the ana	lysis of ~1	20 samples
Age	Creatinine (nmol/mL)	Guanidinoacetate (nmol/mL)	Creatine (nmol/mL)	Creatine/ Creatinine
< or =31 days	430-5240	9-210	12-2930	0.02-0.93
32 days-23 months	313-9040	16-860	18-10490	0.02-2.49
2-4 years	1140-12820	90-1260	200-9210	0.04-1.75
5-18 years	1190-25270	40-1190	60-9530	0.01-0.96
>18 years (male)	3854-23340	30-710	7-470	0.00-0.04
Females				
Age	Creatinine (nmol/mL)	Guanidinoacetate (nmol/mL)	Creatine (nmol/mL)	Creatine/ Creatinine
< or =31 days	430-5240	9-210	12-2930	0.02-0.93
32 days-23 months	313-9040	16-860	18-10490	0.02-2.49
2-4 years	1140-12820	90-1260	200-9210	0.04-1.75
5-18 years	1190-25270	40-1190	60-9530	0.01-0.96
>18 years	1540-18050	30-760	5-2810	0.00-0.46

<text><text><image><image><text><text><text>

High/Low Cutoffs (Males) Urine Creatine

Age	Creatine (nmol/mL)
< or =31 days	12-2930
32 days-23 months	18-10490
2-4 years	200-9210
5-18 years	60-9530
>18 years (male)	7-470

~				
Crea	atine Dis	orders Par	nel, Urir	le
Reference	Values			
Age	Creatinine (nmol/mL)	Guanidinoacetate (nmol/mL)	Creatine (nmol/mL)	Creating
< or =31 days	430-5240	9-210	12-2930	0.02-0.9
32 days-23 months	313-9040	16-860	18-10490	0.02-2.4
2-4 years	1140-12820	90-1260	200-9210	0.04-1.7
5-18 years	1190-25270	40-1190	60-9530	0.01-0.9
>18 years (male)	3854-23340	30-710	7-470	0.00-0.04
Females Age	Creatinine (nmol/mL)	Guanidinoacetate (nmol/mL)	Creatine (nmol/mL)	Creatine
< or =31 days	430-5240	9-210	12-2930	0.02-0.93
32 days-23 months	313-9040	16-860	18-10490	0.02-2.49
2-4 years	1140-12820	90-1260	200-9210	0.04-1.75
5-18 years	1190-25270	40-1190	60-9530	0.01-0.96
	1640 19050	20.760	6 3810	0.00.0.44

Collaborative Laboratory Integrated Reports (CLIR)

 CLIR is a multivariate pattern recognition software and interactive web tool that was initially developed to support Region 4 Stork (R4S), a federally-funded (2004-2012) collaborative project for laboratory quality improvement of newborn screening by tandem mass spectrometry

Collaborative Laboratory Integrated Reports (CLIR)

- CLIR is a multivariate pattern recognition software and interactive web tool that was initially developed to support Region 4 Stork (R4S), a federally-funded (2004-2012) collaborative project for laboratory quality improvement of newborn screening by tandem mass spectrometry
- Since 2012, CLIR is supported by institutional funding and has been approved as an official product of Mayo Clinic

MAYO CLINIC

CLIR - Collaborative Laboratory Integrated Reports https://clir.mayo.edu

Collaborative Laboratory Integrated Reports (CLIR)

- CLIR is a multivariate pattern recognition software and interactive web tool that was initially developed to support Region 4 Stork (R4S), a federally-funded (2004-2012) collaborative project for laboratory quality improvement of newborn screening by tandem mass spectrometry
- Since 2012, CLIR is supported by institutional funding and has been approved as an official product of Mayo Clinic
- (Mayo letter to NICHD, Sept. 2014) CLIR will remain freely available to all interested users in perpetuity when applications are related to newborn screening, clinical biochemical genetics, and pediatric medicine in general

What Does CLIR DO, Exactly?

- Replaces conventional reference ranges
 - With continuous (moving) covariate-adjusted percentiles
- Enhances the clinical utility of individual markers
- · Replaces analyte cutoff values
- Replaces diagnostic sequential algorithms ("and")

· Replaces diagnostic sequential algorithms ("and")

What Does CLIR DO, Exactly?

- Replaces conventional reference ranges
 - With continuous (moving) covariate-adjusted percentiles
 - Enhances the clinical utility of individual markers
 - With all possible permutation of calculated ratios
- Replaces analyte cutoff values
 - With an integrated scoring based on the degree of overlap between reference ranges and condition-specific disease ranges, all adjusted for relevant covariates
- Replaces diagnostic sequential algorithms ("and")
 - With tool-based post-analytical parallel algorithms ("or")

	Ν	BS	for K	rabbe	(<u>with</u>	CLIF	?)
		Year	2016	2017	2018	2019	ALL
	Volume	ə (KY)	48,125	55,453	55,152	42,956	201,686
At	onormal (CLIR)	13	9	5	18	45 (0.02%)
	*Norma	al 2TT	12/13	9/9	5/5	18/18	44/45
Rej	ported po	sitive	1	0	0	0	1
	Confirm	ed TP	1	0	0	0	0
	Confirm	ed FP	0	0	0	0	0
	Detectio	n rate	1:55,151	n/a	n/a	n/a	1:201,686
*	SY <15	FPR	0%	0%	0%	0%	0%
30kt	o del -/-	PPV	100%	n/a	n/a	n/a	100%

How to Retrospectively Make Individualized Reference Ranges from Clinical Testing Results

- Data mining from LIS (SCC Soft since 11/2011)
- Removal of obvious outliers (± 10% highest/lowest cutoff)
- Data sorting (site, sex, age)
- Filtering by age- and sex-specific peripheral percentiles
- CLIR productivity tools
 - Validation tool (gateway of data uploads)
 - Reference ranges by covariate
 - Reference data review (manual removal of residual outliers)

Data Mining from LIS

 Schedule
 Prompts Edit Values...

 Instance Title
 Edit Values...

 Recurrence
 Parameter
 Scheduling Value

 Database Logon
 * Text Code
 CDRPU

 * Sont Date
 * Sont Date
 Oct 31, 2019

 Filterss
 Age Rarge
 (0.001.100.00)

 Formats
 * Required
 * Required

951853	Co	unt	1375	368	228	178	181	540	962	767	606	555
Min/Max	Perc	entile	0.1	0.2	0.3	0.4	0.5	1	2	3	4	5
6.30/8.00		1%	6.30	6.97	6.80	7.40	7.58	6.90	7.36	7.73	7.61	7.90
7.30/8.50		5%	7.30	8.20	8.20	8.00	8.20	8.30	8.11	8.40	8.10	8.40
7.80/8.80		10%	7.80	8.60	8.80	8.60	8.60	8.70	8.50	8.60	8.30	8.60
8.90/10.10		50%	9.30	9.70	9.90	10.00	10.10	9.90	9.60	9.50	9.40	9.50
9.50/11.80		90%	10.50	10.50	10.80	11.10	11.80	11.00	10.40	10.40	10.10	10.16
9.60/12.33	2	95%	10.83	10.80	11.10	12.33	12.30	11.40	10.60	10.80	10.30	10.30
9.90/15.05		99%	11.80	11.30	11.55	15.05	12.86	12.56	11.72	11.43	10.60	10.70
		MAX	18.80	11.60	12.60	18.40	13.50	13.20	21.00	13.50	11.70	13.30
START		MIN	5.80	6.20	5.70	5.30	5.40	6.20	4.90	6.60	7.10	6.40

lydro	ху	ind	olea	cet	ic A	∖cid,	24	Ho	ur,	Urin	е		5HIAA, mg/24 I 99th Percentile
Age	Female	Male	Age	Female	Male	Age	Female	Male	Age	Female	Male	Age	Female Male
< or =23 months	< or =2.7	< or =2.3	21 years	< or #6.2	< or =6.9	41 years	< or =7.1	< or =8.3	61 years	< or #8.3	< or =9.9	81 years	< or =8.7 < or =9.9
24-35 months	< or =3.0	< or =2.6	22 years	< or =6.2	< or =7.0	42 years	< or =7.2	< or =8.4	62 years	< or +8.4	< or =9.9	82 years	< or =8.7 < or =9.9
3 years	< or =3.2	< or =2.9	23 years	< or =6.2	< or =7.0	43 years	< or =7.3	< or =8.5	63 years	< or +8.4	< or =10.0	83 years	< or +8.7 < or +9.9
4 years	< or =3.4	< or =3.2	24 years	< or =6.3	< or =7.1	44 years	< or =7.4	< or =8.6	64 years	< or =8.4	< or =10.0	84 years	< or =8.7 < or =9.9
5 years	< or =3.6	< or =3.6	25 years	< or =6.3	< or =7.2	45 years	< or =7.4	< or =8.7	65 years	< or #8.4	< or =10.0	85 years	< or =8.6 < or =9.8
6 years	< or =3.8	< or =3.9	26 years	< or =6.3	< or =7.2	46 years	< or =7.5	< or =8.8	66 years	< or #8.5	< or =10.1	86 years	< or =8.5 < or =9.8
7 years	< or =4.0	< or =4.2	27 years	< or =6.4	< or =7.3	47 years	< or =7.6	< or =8.9	67 years	< or #8.5	< or =10.1	87 years	< or =8.4 < or =9.7
8 years	< or #4.2	< or =4.5	28 years	< or =6.4	< or =7.4	48 years	< or =7.6	< or =9.0	68 years	< or +8.5	< or =10.1	88 years	< or =8.3 < or =9.7
9 years	< or =4.5	< or =4.8	29 years	< or =6.5	< or =7.5	49 years	< or =7.7	< or =9.1	69 years	< or =8.5	< or =10.2	89 years	< or =8.1 < or =9.5
10 years	< or =4.7	< or =5.1	30 years	< or =6.6	< or =7.5	50 years	< or =7.7	< or =9.2	70 years	< or =8.5	< or =10.2	90 years	< or =7.9 < or =9.4
11 years	< or =4.9	< or =5.3	31 years	< or +6.6	< or =7.6	51 years	< or =7.8	< or =9.3	71 years	< or #8.6	< or =10.2	91 years	< or =7.6 < or =9.2
12 years	< or =5.2	< or =5.6	32 years	< or +6.7	< or =7.7	52 years	< or =7.8	< or =9.4	72 years	< or =8.6	< or =10.2	92 years	< or =7.4 < or =9.0
13 years	< or =5.4	< or =5.8	33 years	< or =6.8	< or =7.7	53 years	< or =7.9	< or =9.5	73 years	< or +8.5	< or =10.1	93 years	< or =7.1 < or =8.8
14 years	< or +5.6	< or =6.1	34 years	< or =6.8	< or =7.8	54 years	< or =8.0	< or =9.6	74 years	< or +8.5	< or =10.1	94 years	< or =7.0 < or =8.7
15 years	< or =5.7	< or =6.3	35 years	< or =6.9	< or =7.9	55 years	< or =8.1	< or =9.7	75 years	< or +8.6	< or =10.1	= 95 years	< or +6.9 < or +8.6
16 years	< or =5.9	< or =6.4	36 years	< or +6.9	< or =7.9	56 years	< or =8.1	< or =9.7	76 years	< or =8.6	< or =10.0	-	Lenge (c)
17 years	< or =6.0	< or =6.6	37 years	< or =7.0	< or =8.0	57 years	< or =8.2	< or =9.8	77 years	< or #8.6	< or =10.0	· · •	
18 years	< or =6.0	< or =6.7	38 years	< or =7.0	< or =8.1	58 years	< or +8.3	< or =9.8	78 years	< or #8.6	< or =10.0	1.	
19 years	< or =6.1	< or -6.8	39 years	< or =7.0	< or =8.2	59 years	< or +8.3	< or =9.8	79 years	< or +8.6	< or =10.0		
20 years	< or =6.1	< or =6.9	40 years	< or #7.1	< or =8.2	60 years	< or =8.3	< or =9.9	80 years	< or +8.7	< or =9.9	-	

Outline

- The magnitude of the problem: Limitations of past state (partition bins, cutoff values)
- Current state: Collaborative Laboratory Integrated Reports (CLIR)
- The making of individualised reference ranges (how does it work)
- Future state: A proposal to move forward (how lab tests should be routinely ordered in the era of personalized medicine)

Future State: A Proposal

- The ordering of every laboratory test will include
 - Sex
 - PRECISE Age (my age today is 62.739726 yr)
 - HEIGHT and WEIGHT
 - Reason for referral (dream on....)

Future State: A Proposal

- The ordering of every laboratory test will include
 - Sex
 - PRECISE Age (my age today is 62.739726 yr)
 - HEIGHT and WEIGHT
 - Reason for referral (dream on....)
- The <u>reporting</u> of every laboratory test will include
 - Age, sex, and BMI adjusted reference ranges

The Goal of Future State: <u>Clinical Utility</u> (why we do what we do..... Agree?)

- It is critical to understand that, after all, even "perfect" reference intervals are not what is really needed in clinical practice, unless the given task, and clinical expectation, is to accurately "diagnose" healthy people!
- Comparison of results to <u>DISEASE RANGES</u> is far more important to answer the question whether a "non-normal" result is actually consistent with a particular disease status (from normal/abnormal to <u>likelihood of disease</u>)

